
DO YOU LACK STABILITY IN YOUR

LIFE?

ESPECIALLY WHEN IT COMES TO

ORACLE EXECUTION PLANS?

Janis Griffin

Senior DBA / Performance Evangelist

Senior DBA / Performance Evangelist for SolarWinds

o JanisGriffin@solarwindscom

o Twitter® - @DoBoutAnything

o Current – 25+ Years in Oracle®, SQL Server®, ASE, and now MySQL®

o DBA and Developer

Specialize in Performance Tuning

Review Database Performance for Customers and Prospects

Common Question – How do I tune it?

WHO AM I

2© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

mailto:Janis.Griffin@solarwinds.com

History of Plan Stability

o In the beginning

o Outlines, Profiles, Patches & Baselines

How the optimizer works

Why & how do plans change

o V$SQL_PLAN & V$SQL_SHARED_CURSOR

• Helps with finding out the ‘WHY’

• XML Query of column ‘Other_XML’

Which features may impact the plan

o Adaptive Cursor Sharing

o SQL Directives & Statistics Feedback

Using Baselines, Patches & Profiles to help stabilize plans

Q & A

AGENDA

3© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

QUERY SUDDENLY RUNS SLOWER

4

Why is this query, which
runs once a day,
suddenly taking so long?

Specified SQL Statements | PROD_STA740
December 19, 2015 to January 17, 2016

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

PLAN REGRESSION

5

Sudden plan change

Top Plans for SQL Statement Change Notices | PROD_STA740
December 19, 2015 to January 17, 2016

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Oracle 8 – Introduced cost-based optimizer

o Allowed for Hash joins, Histograms, Partitioning & Parallel queries

o Required statistics gathering

• Quickly found out that plans could change over time

o 8.1.7+ Stored Outlines to control plan changes

Oracle 10g – SQL Profiles / Tuning Advisor

o Sub-optimal execution plans still generated

o Performance Regression overtime - No Evolution

o DBMS_SQLTUNE – Costs $$$

Oracle 11 – SQL Patches & SQL Plan Management (Baselines)

o SQL Patches free both in Standard or Enterprise

o Baselines free with Enterprise

Oracle 12C – Adaptive Optimizer

o Allows for automatic plan evolution & SPM Evolve Advisor

IN THE BEGINNING - HISTORY OF PLAN STABILITY

6© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Stored Outlines

o Can ‘freeze’ a plan for a specific statement

o Used when sql changing between a couple of plans

• e.g. bind variable peeking

o Implemented with hints

• So freeze is not absolutely guaranteed (e.g. hint uses index but index can be dropped)

• DBMS_OUTLN / alter session set create_stored_outlines = true;

SQL Profiles

o Created by SQL Tuning Advisor (dbms_sqltune - cost $$$)

o Similar to Outlines – implemented with hints

o Uses OPT_ESTIMATE hint – not always accurate

• Tries to improve cost estimates over time (factors 10x estimate – may be wrong)

o Nightly look at SQLs to find better execution plan

OUTLINES & PROFILES

7© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Reactive versus Proactive

o Performance issues have to occur before fix

Depends on hints to limit optimizer choices

o Not a guaranteed plan when changes happen

Can grow stale over time

o No evolution of plans as changes happen

Outlines – Deprecated Announcement in 11

o But still work in 12c

Profiles/Tuning Advisor – Cost $$$

OUTLINES & PROFILES LIMITATIONS

8© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

SQL Patches is part of the SQL Repair Advisor (11g)

o Used after a SQL statement fails with a critical error

• Example - index is dropped, the advisor recommends a patch using another index

DBA can manually add patches outside of SQL Repair Advisor

o Used to insert hints into a query which can’t be changed

• Useful for 3rd party applications

o Uses the function: dbms_sqldiag_internal.i_create_patch

Advantages over Profiles & Baselines

o Advisor is FREE in both Standard & Enterprise Additions

o Works without tuning packs

Limitations

o If patch is used, it’s often forgotten

• Need to periodically review performance (won’t evolve)

o Is more of a workaround than a solution

SQL PATCHES

9© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Preventative mechanism for Plan Stability

o Optimizer records & evaluates execution plans over time (if run more than once)

o Baselines can evolve overtime for better performance

o Preserves performance regardless of changes

o DBA can verify that only comparable or better plans will be used

Common Uses of Baselines

o System & Data changes causing performance regressions

o Database Upgrades & New Application Installs

In 12c

o Manage SPM Evolve Advisor via OEM or DBMS_AUTO_TASK_ADMIN

o Still can evolve unaccepted plans manually using DBMS_SPM or OEM

SQL PLAN MANAGEMENT (BASELINES)

10© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Baseline evolution is dependent on new plan performance

o Must be >= 1.5x better

o Significant performance improvements could happen > 1x

• DBA must manually research and evolve these

Baselines are created using the signature of the SQL statement

o Unique SQL identifier generated from the normalized SQL text

• Uncased & whitespaces removed

o Could be wrong plan if same SQL statement is used in different schemas

• For example, missing index in one schema not the other

• May result in many unaccepted baselines

SQL statements using dblinks can’t be baselined

o No remote access

BASELINE LIMITATIONS

11© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

12© 2016 SOLARWINDS WORLDWIDE, LLC. ALL
RIGHTS RESERVED.

https://www.youtube.com/watch?v=g_I0DjpJ3a0

https://www.youtube.com/watch?v=g_I0DjpJ3a0

HOW THE OPTIMIZER WORKS

13

Query Transformer – rewrites query to
be more efficient

Plan Generator – creates multiple plans
using different access paths & join
types. Plan with lowest cost is chosen

Estimator – looks at selectivity,
cardinality & cost

Data Dictionary

Schema Definition
Statistics

Parsed Query (from Parser)

Transformed Query

Query + Estimates

Default Plan sent to Row Source Generator

Init.ora parameter to control behavior:
OPTIMIZER_FEATURES_ENABLED

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Show the sequence of operations performed to run SQL Statement

o Order of the tables referenced in the statements

o Access method for each table in the statement

• INDEX

• INLIST ITERATOR

• TABLE ACCESS

• VIEW

o Join method in statement accessing multiple tables

• HASH JOIN

• MERGE JOIN

• NESTED LOOPS

o Data manipulations

• CONCATENATION

• COUNT

• FILTER

• SORT

o Statistic Collectors

• New in 12C

EXECUTION PLAN

14© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Allows for run-time adjustments to execution plans

Can discover additional information

o Which can lead to better statistics & optimal plans

12C ADAPTIVE QUERY OPTIMIZER

15

Adaptive Query Optimizer

Adaptive Plans Adaptive
Statistics

Join
Methods

Parallel
Distribution

Dynamic
Statistics

Automatic
Reoptimization

Sql Plan
Directives

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Init.ora parameters that control Adaptive Plans

Use DBMS_XPLAN.DISPLAY_CURSOR to view Adaptations

o Use format parameter ‘+report’ for testing

• Works with ‘reporting_only’ mode

select * from table(dbms_xplan.display_cursor ('&sql_id',&child,format=>'+report'));

o Use format parameter ‘+adaptive’ to see all steps (active / inactive)

• Including instrumented statistics collectors

select * from table(dbms_xplan.display_cursor('&sql_id',&child,format=>'+adaptive'));

HOW TO CONTROL & VIEW ADAPTATIONS

16

Name Type Value
optimizer_adaptive_features boolean TRUE
optimizer_adaptive_reporting_only boolean FALSE
optimizer_features_enable string 12.1.0.1
optimizer_dynamic_sampling integer 2

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

SELECT sql_id, child_number,

SUBSTR(sql_text, 1,30) sql_text,

IS_RESOLVED_ADAPTIVE_PLAN,

IS_REOPTIMIZABLE

FROM v$sql

WHERE sql_text like 'select /* jg */%'

ORDER BY sql_id,child_number

ADAPTIVE PLANS

17

IS_REOPTIMIZABLE is for next execution
• Y - the next execution will trigger a reoptimization
• R – has reoptimization info but won’t trigger due to reporting mode
• N -the child cursor has no reoptimization info

select /* jg */ p.product_name
from order_items o, product p
where o.unit_price = :b1
and o.quantity > :b2
and o.product_id = p.product_id;

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

alter session set optimizer_adaptive_reporting_only=TRUE;

select * from table(dbms_xplan.display_cursor('8qpakg674n4mz',0,format=>'+report'));

OPTIMIZER_ADAPTIVE_REPORTING_ONLY

18

Adapted on first execution

alter session set optimizer_adaptive_reporting_only=FALSE

ACTUAL ADAPTIVE PLAN

19

;

Execution plans can change as underlying inputs to optimizer change

o Same Sql – Different Schemas

• Different table sizes / statistics / indexes

o Same Sql – Different Costs

• Data volume & Statistic Changes over time

• Bind variable types and values

• Initialization parameters (set globally or session level)

• Adaptive Cursor Sharing – 11G

• V$SQL - IS_BIND_SENSITIVE: optimizer peeked –plan may change

• V$SQL - IS_BIND_AWARE: ‘Y’ after query has been marked bind sensitive

• Adaptive Plans, Statistics, & Directives – 12C

o V$SQL_SHARED_CURSOR

• Can give clues to why plan changed

• 70 columns showing mismatches /differences

• Hard to view – query next slide

WHY PLANS CHANGES

20© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

DECLARE c NUMBER; col_cnt NUMBER; col_rec DBMS_SQL.DESC_TAB; col_value VARCHAR2(4000); ret_val NUMBER;

BEGIN

c := dbms_sql.open_cursor;

DBMS_SQL.PARSE(c,’SELECT q.sql_text, s.* FROM v$sql_shared_cursor s, v$sql q WHERE s.sql_id = q.sql_id

AND s.child_number = q.child_number AND q.sql_id = ‘’&1’’’, DBMS_SQL.NATIVE);

DBMS_SQL.DESCRIBE_COLUMNS(c, col_cnt, col_rec);

FOR idx IN 1 .. Col_cnt LOOP

DBMS_SQL.DEFINE_COLUMN(c, idx, col_value, 4000);

END LOOP;

ret_val := DBMS_SQL.EXECUTE(c);

while(DBMS_SQL.FETCH_ROWS(c) > 0) LOOP

FOR idx IN 1 .. Col_cnt LOOP

DBMS_SQL.COLUMN_VALUE(c, idx, col_value);

IF col_rec(idx).col_name in (‘SQL_ID’, ‘ADDRESS’, ‘CHILD_ADDRESS’,’CHILD_NUMBER’, ‘SQL_TEXT’, ‘REASON’) THEN

DBMS_OUTPUT.PUT_LINE(RPAD(col_rec(idx).col_name, 30) || ‘ = ‘ || col_value);

ELSIF col_value = ‘Y’ THEN

DBMS_OUTPUT.PUT_LINE(RPAD(col_rec(idx).col_name, 30) || ‘ = ‘ || col_value);

END IF;

END LOOP;

DBMS_OUTPUT.PUT_LINE(‘--’);

END LOOP;

DBMS_SQL.CLOSE_CURSOR(C);

END;

/

V$SQL_SHARED_CURSOR - SHARED_PROC.SQL

21© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

SELECT sql_id, count(*) plan_cnt

FROM v$sql

GROUP BY sql_id having count(*) >1

ORDER BY 2 DESC;

QUERIES WITH MULTIPLE PLANS – OPTIMIZER MISMATCH

22© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

…

SELECT /*+ OPT_PARAM('_fix_control‘ 16391176:1') */
GROUP_TYPE, BUCKET_START, BUCKET_END, TM_GROUP_TYPE ...

‘_fix_control’ is a hidden parameter for bugs - see v$system_fix_control or v$session_fix_control

QUERIES WITH MULTIPLE PLANS – BIND MISMATCH

23© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

SELECT count(*) child_cnt, m.position bind_number, m.max_length,

decode(m.datatype,1,'VARCHAR2',2,'NUMBER',m.datatype) AS datatype

FROM v$sql s, v$sql_bind_metadata m

WHERE s.sql_id = '&sql_id'

AND s.child_address = m.address

group by m.position,

m.max_length,decode(m.datatype,1,'VARCHAR2',2,'NUMBER',m.datatype)

having count(*) < &tot_child_cnt

order by 4,1

EXAMPLE OF ADAPTIVE PLANS

Select /* jg */ p.product_name from order_items o, product p where o.unit_price = :b1 and o.quantity > :b2 and o.product_id = p.product_id;

24

MY V$SQL_SHARED_CURSOR

25

DECLARE c NUMBER; col_cnt NUMBER; col_rec DBMS_SQL.DESC_TAB; col_value VARCHAR2(4000); ret_val NUMBER; v_sql_id VARCHAR2(100);
BEGIN

c := dbms_sql.open_cursor;
DBMS_SQL.PARSE(c,'SELECT q.sql_text, s.* FROM v$sql_shared_cursor s, v$sql q WHERE s.sql_id = q.sql_id AND s.child_number = q.child_number', DBMS_SQL.NATIVE);
DBMS_SQL.DESCRIBE_COLUMNS(c, col_cnt, col_rec);
FOR idx IN 1 .. Col_cnt LOOP

DBMS_SQL.DEFINE_COLUMN(c, idx, col_value, 4000);
END LOOP;
ret_val := DBMS_SQL.EXECUTE(c);
while(DBMS_SQL.FETCH_ROWS(c) > 0) LOOP

FOR idx IN 1 .. Col_cnt LOOP
DBMS_SQL.COLUMN_VALUE(c, idx, col_value);

IF col_rec(idx).col_name in ('SQL_ID') THEN
v_sql_id := col_rec(idx).col_name || ' = '|| col_value;

ELSIF col_value = 'Y' THEN
DBMS_OUTPUT.PUT_LINE(v_sql_id ||' ' ||RPAD(col_rec(idx).col_name, 30) || ' = ' || col_value);

END IF;
END LOOP;

END LOOP;
DBMS_SQL.CLOSE_CURSOR(C);

END;
/

SELECT /*+ opt_param('parallel_execution_enabled', 'false') */

/* EXEC_FROM_DBMS_XPLAN */

id, parent_id, partition_id, timestamp, optimizer, position, search_columns, depth,

operation, options, object_name, object_owner, object_type, null as object_instance,

cardinality, bytes, temp_space, cost, io_cost, cpu_cost, time, partition_start, partition_stop,

object_node, other_tag, distribution, null, access_predicates, filter_predicates,

other, null, null, other_xml, sql_profile, sql_plan_baseline, null, null, null, null, null, null,

null,null, null, null, null, null, null, null, null, null from

(select /*+ no_merge */ vp.id id, vp.parent_id parent_id, vp.partition_id, vp.timestamp,

vp.optimizer, vp.search_columns, vp.depth depth, vp.position position,

vp.operation operation, vp.options options, vp.cost cost, vp.time time, vp.cardinality cardinality,

vp.bytes bytes, vp.object_node object_node, vp.object_name object_name,

vp.object_owner object_owner, vp.object_type object_type, null as object_instance,

vp.other_tag other_tag, vp.partition_start partition_start, vp.partition_stop partition_stop,

vp.distribution distribution, vp.temp_space temp_space, vp.io_cost io_cost, vp.cpu_cost cpu_cost,

vp.filter_predicates filter_predicates, vp.access_predicates access_predicates, vp.other other,

vp.projection projection, vp.qblock_name qblock_name, vp.object_alias object_alias,

vp.other_xml other_xml, v$sql.sql_profile sql_profile, v$sql.sql_plan_baseline sql_plan_baseline,

0 starts, 0 outrows, 0 crgets, 0 cugets,0 reads,0 writes, 0 etime,0 mem_opt,0 mem_one,

null last_mem_used, null last_mem_usage,0 opt_cnt,0 one_cnt,0 multi_cnt,0 max_tmp,0 last_tmp

from V$SQL_PLAN vp, v$sql

where vp.SQL_ID = &sql_id and vp.child_number=&child

and vp.SQL_ID = v$sql.SQL_ID

and v$sql.is_obsolete = 'N'

and v$sql.address = vp.address

and v$sql.child_number= &child)

order by id;

V$SQLPLAN & DBMS_XPLAN.DISPLAY_CURSOR

26

select * from table(dbms_xplan.display_cursor(‘&sql_id’, &child_number));

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

OTHER_XML column contains notes, peeked binds, hints, & display map information

V$SQLPLAN & DBMS_XPLAN.DISPLAY_CURSOR – CONT.

27

SELECT /*+ opt_param('parallel_execution_enabled', 'false') */

extractvalue(xmlval, '/*/info[@type = "sql_profile"]') sql_profile

, extractvalue(xmlval, '/*/info[@type = "sql_patch"]') sql_patch

, extractvalue(xmlval, '/*/info[@type = "baseline"]') baseline

, extractvalue(xmlval, '/*/info[@type = "outline"]') outline

, extractvalue(xmlval, '/*/info[@type = "dynamic_sampling"]') dynamic_sampling

, extractvalue(xmlval, '/*/info[@type = "dop"]') dop

, extractvalue(xmlval, '/*/info[@type = "dop_reason"]') dop_reason

, extractvalue(xmlval, '/*/info[@type = "pdml_reason"]') pdml_reason

, extractvalue(xmlval, '/*/info[@type = "idl_reason"]') idl_reason

, extractvalue(xmlval, '/*/info[@type = "queuing_reason"]') queuing_reason

, extractvalue(xmlval, '/*/info[@type = "px_in_memory"]') px_in_memory

, extractvalue(xmlval, '/*/info[@type = "px_in_memory_imc"]') px_in_memory_imc

, extractvalue(xmlval, '/*/info[@type = "row_shipping"]') row_shipping

, extractvalue(xmlval, '/*/info[@type = "index_size"]') index_size

, extractvalue(xmlval, '/*/info[@type = "result_checksum"]') result_checksum

, extractvalue(xmlval, '/*/info[@type = "cardinality_feedback"]') cardinality_feedback

, extractvalue(xmlval, '/*/info[@type = "performance_feedback"]') performance_feedback

, extractvalue(xmlval, '/*/info[@type = "xml_suboptimal"]') xml_suboptimal

, extractvalue(xmlval, '/*/info[@type = "adaptive_plan"]') adaptive_plan

, extractvalue(xmlval, '/*/spd/cu') spd_cu

, extractvalue(xmlval, '/*/info[@type = "gtt_session_st"]') gtt_session_st

, extractvalue(xmlval,'/*/info[@type = "plan_hash"]') plan_hash

from

(select xmltype(replace(other_xml,'''','"')) xmlval from v$sql_plan

where sql_id = '&sqlid' and child_number=&child and other_xml is not null);

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Bind Variable Peeking / Adaptive Cursor Sharing Example

WHICH FEATURES MAY IMPACT THE PLAN

28© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

First ran with
:P1=10

BIND VARIABLE PEEKING / ADAPTIVE CURSOR SHARING

29© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

1st run with :p1=10 Changed after 2nd execution of :p1=40

:P1

10

40

10

20

30

BIND VARIABLE PEEKING / ADAPTIVE CURSOR SHARING

30© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

SELECT * FROM TABLE
(DBMS_SQLTUNE.EXTRACT_BINDS
('BEDA0C100200583C989D000101C0021602C10B'));

DYNAMIC STATISTICS (DYNAMIC SAMPLING IN 9.2)

Missing Statistics

Stale Statistics

Insufficient Statistics

Parallel Execution

SQL Plan Directives

31

Estimates
over 6X off!

Notes:
Parse time takes longer.
Results are persisted &
used elsewhere

Estimated cardinalities can be incorrect for many reasons

o missing statistics, inaccurate statistics, or complex predicates

After 1st execution, estimates are compared with actual rows

o If they differ significantly, optimizer stores correct estimates for future use

• Statistics feedback = OPT_ESTIMATE hints in V$SQL_REOPTIMIZATION_HINTS

Can create a SQL PLAN DIRECTIVE for other SQL statements

o They benefit from information obtained during initial execution

STATISTICS FEEDBACK

32© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

select * from table(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST'));

STATISTICS FEEDBACK

33

STATISTICS FEEDBACK – ANOTHER EXAMPLE

34© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Are additional Instructions for missing column group statistics or histograms

o Dynamic sampling performed on directive

• Until statistics are gathered for the column group (e.g. City / State / Country)

Not tied to a specific sql statement – defined on a query expression

o Can be used by similar queries

Are created in shared_pool & periodically written to SYSAUX tablespace

o DBA_SQL_PLAN_DIRECTIVES

o DBA_SQL_PLAN_DIR_OBJECTS

Use DBMS_STATS extended functions & procedures

o CREATE_EXTENDED_STATS

o SHOW_EXTENDED_STATS_NAME

o DROP_EXENTED_STATS

SQL PLAN DIRECTIVES

35© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

SQL PLAN DIRECTIVES – CONT.

36

SELECT TO_CHAR(d.directive_id) dir_id,
o.owner, o.object_name, o.subobject_name col_name,
o.object_type, d.type,d.state,d.reason

FROM dba_sql_plan_directives d, dba_sql_plan_dir_objects o
WHERE d.directive_id = o.directive_id
AND o.owner IN (‘DPA')
ORDER BY 1,2,3,4,5;

SELECT sum(SW.QP)/100.0 FROM CONSW_4 SW, CONEV_4 EV
where SW.KEEQ=EV.ID and lower(EV.NAME)='direct path read' and
SW.D > :p1;

Use DBMS_SPD package to manage

o Can’t manually create directives

HOW TO MANAGE SQL PLAN DIRECTIVES

37

Name P / F Task

ALTER_SQL_PLAN_DIRECTIVE P Changes either STATE or AUTO_DROP

DROP_SQL_PLAN_DIRECTIVE P Drops SQL Plan Directive (SPD)

FLUSH_SQL_PLAN_DIRECTIVE P Flushes SQL Plan Directives out of SGA

CREATE_STGTAB_DIRECTIVE P Staging table for exporting SPDs

PACK_STGTAB_DIRECTIVE F Exports SPDs in to Staging table

UNPACK_STGTAB_DIRECTIVE F Imports SPDs from Staging table

GET_PREFS F Get setting for SPD_RETENTION_WEEKS

SET_PREFS P Sets SPD_RETENTION_WEEKS
(default set to 53 weeks)

TRANSFER_SPD_FOR_DP P Undocumented

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Drop all existing SPD

Alter system / session set “_optimizer_dsdir_usage_control”=0;

o Not Recommended

Tip: Monitor SQL DIRECTIVES and their states closely

o Create extended statistics

o Remove directives when supported by valid statistics.

DON’T WANT ANY DIRECTIVES

38
© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

New init.ora parameters

o OPTIMIZER_ADAPTIVE_PLANS (Default = TRUE)

• Adaptive joins

• Bitmap pruning

• Parallel distribution method

o OPTIMIZER_ADAPTIVE_STATISTICS (Default = False)

• SQL Plan Directives (SPDs) for query optimization

• Statistics feedback (for joins only)

• Adaptive dynamic sampling for parallel queries

• Performance feedback

Obsolete

o OPTIMIZER_ADAPTIVE_FEATURES

12.2 OPTIMIZER CHANGES

© 2017 SolarWinds Worldwide, LLC. All rights reserved.

SQL Plan Directives

o Control of Auto Creation of Column Group Statistics

o New DBMS_STATS preference

• AUTO_STAT_EXTENSIONS (DEFAULT=OFF)

• EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_STAT_EXTENSIONS','ON')

o Can view in DBA_STAT_EXTENSIONS

• select owner,

• table_name,

• extension,

• extension_name

• from dba_stat_extensions

• where creator = 'SYSTEM'

• order by owner,table_name,extension_name;

12.2 OPTIMIZER CHANGES

© 2017 SolarWinds Worldwide, LLC. All rights reserved.

Example of dropping all directives for ‘SOE’ user

DBMS_SPD

EXEC DBMS_SPD. FLUSH_SQL_PLAN_DIRECTIVE;

BEGIN

FOR get_rec in (SELECT distinct TO_CHAR(d.directive_id) dir_id
FROM dba_sql_plan_directives d, dba_sql_plan_dir_objects o
WHERE d.directive_id = o.directive_id
AND o.owner in ('SOE')) LOOP

DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE(get_rec.dir_id);
end loop;
end;
/

commit;

39© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

HOW TO STABILIZE PLANS

42

Baselines

Profiles

Patches

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

11g feature helps stop performance regression via plan changes

o Uses baselines to guarantee only better plans are used

12c SPM evolve advisor is an Auto Task (SYS_AUTO_SPM_EVOLVE_TASK)

• Runs nightly in maintenance window

• Automatically runs the evolve process for non-accepted plans in SPM

• DBA views results of nightly task using DBMS_SPM.REPORT_AUTO_EVOLVE_TASK

• Can Manage via OEM or DBMS_AUTO_TASK_ADMIN

Still can manually evolve an unaccepted plan using OEM or DBMS_SPM

o DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE has been deprecated in 12c

SQL PLAN MANAGEMENT (BASELINES)

43

var task varchar2(1000);
var evolve varchar2(100);
var imple varchar2(1000);
var rpt clob;
exec :task := DBMS_SPM.CREATE_EVOLVE_TASK(sql_handle=>'&sql_handle');
exec :evolve := DBMS_SPM.EXECUTE_EVOLVE_TASK(task_name=>:task);
exec :imple :=DBMS_SPM.IMPLEMENT_EVOLVE_TASK(task_name=>:task,FORCE=>true);
exec :rpt := DBMS_SPM.REPORT_EVOLVE_TASK(task_name=>:task,type=>'TEXT', execution_name=>:evolve);
print

SQL PLAN MANAGEMENT (BASELINES)

44

SELECT products.product_id, product_name, product_description, category_id, weight_class,

warranty_period, supplier_id, product_status, list_price, min_price, catalog_url, quantity_on_hand

FROM products, inventories

WHERE products.category_id = :b3

AND inventories.product_id = products.product_id

AND inventories.warehouse_id = :b2

AND rownum < :b1

EXAMPLE – PRODUCT QUERY

45

SET SERVEROUTPUT ON LONG 10000

DECLARE rpt clob;

BEGIN

rpt := DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE(

sql_handle => 'SYS_SQL_fdf0214a24814e13');

DBMS_OUTPUT.PUT_LINE(rpt);

END;

SELECT sql_handle, plan_name, sql_text, enabled, accepted, fixed from dba_sql_plan_baselines;

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

EXAMPLE – BASELINE / EVOLVE

46

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

EXAMPLE – HIGH COST

select * from table(dbms_xplan.display_sql_plan_baseline(sql_handle=>'SYS_SQL_fdf0214a24814e13',plan_name=>'SYS_SQL_PLAN_24814e132c1c9d7b'))

45

Force Evolution of new baseline
var task varchar2(1000);

var evolve varchar2(100);

var imple varchar2(1000);

var rpt clob;

exec :task := DBMS_SPM.CREATE_EVOLVE_TASK(sql_handle=>'&sql_handle');

exec :evolve := DBMS_SPM.EXECUTE_EVOLVE_TASK(task_name=>:task);

exec :imple :=DBMS_SPM.IMPLEMENT_EVOLVE_TASK(task_name=>:task,FORCE=>true);

exec :rpt := DBMS_SPM.REPORT_EVOLVE_TASK(task_name=>:task,type=>'TEXT', execution_name=>:evolve);

print

Disable Old Plan
var ret number

exec :ret := DBMS_SPM.ALTER_SQL_PLAN_BASELINE(-

sql_handle=>'SYS_SQL_fdf0214a24814e13', -

plan_name=>'SYS_SQL_PLAN_24814e132c1c9d7b', -

attribute_name=>’ENABLED', -

attribute_value=>’NO');

EXAMPLE – FORCE PLAN

48© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

EXAMPLE – BETTER PERFORMANCE

49

Forced New

Baseline

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

If you can hint it, baseline it (per Tom Kyte)

Alternative to using hints

o 3rd Party Software – can’t modify code

o Hints difficult to manage over time

o Once added, usually forgotten about

BASELINE TIPS

50

Can change the execution plans by supplying hints

o 3rd Party Software – can’t modify code

Works in Standard & Enterprise editions

Needs ‘grant execute on sys.dbms_sqldiag_internal’

-- Command to drop patch if it already exists

exec DBMS_SQLDIAG.DROP_SQL_PATCH('EMP_PATCH');

-- Commands to create patch

begin

sys.dbms_sqldiag_internal.i_create_patch(

sql_text => 'select count(*), max(empno) from emp where deptno = :deptno',

hint_text => 'DYNAMIC_SAMPLING(4)‘,

name => 'EMP_PATCH');

end;

/

SQL PATCHES

51© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

begin

sys.dbms_sqldiag_internal.i_create_patch(

sql_text => 'select e.empno EOD, e.ename "Employee_name", d.dname "Department",'

||' e.hiredate "Date_Hired" from emp e, dept d where d.deptno = :p1'

||' and e.deptno = d.deptno',

hint_text => 'BIND_AWARE',

name => 'EMP_DEPTNO');

end;

/

SQL PATCHES – ANOTHER EXAMPLE

52© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

NOTE - SQL patch "EMP_DEPTNO" used for this statement

Tuning Advisor runs nightly – DBMS_AUTO_SQLTUNE

o Can be configured to automatically implement SQL Profiles

• Not recommended

o Can run manually for advice for one or more SQL statements
DECLARE

l_sql_tune_task_id VARCHAR2(100);

BEGIN

l_sql_tune_task_id := DBMS_SQLTUNE.create_tuning_task (sql_id => '&sql_id',

scope => DBMS_SQLTUNE.scope_comprehensive, time_limit => 60,

task_name => '&sql_id', description => 'Tuning task for class registration query');

DBMS_OUTPUT.put_line('l_sql_tune_task_id: ' || l_sql_tune_task_id);

END;

/

EXEC DBMS_SQLTUNE.execute_tuning_task(task_name => '&sql_id');

SQL PROFILES & TUNING ADVISOR

53© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Query to report advice
VARIABLE auto_rpt CLOB;

BEGIN

:auto_rpt :=DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK (begin_exec => NULL, end_exec => NULL, type => 'TEXT'

, level => 'TYPICAL', section => 'ALL’, object_id => NULL, result_limit => NULL);

END;

/

PRINT :auto_rpt

SQL PROFILES & TUNING ADVISOR

54© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Select * from table (dbms_xplan.display_cursor(‘&sql_id,&child,’ADVANCED’));

SQL PROFILES – MANUAL SETUP

55

DECLARE

sqlt clob;

BEGIN

sqlt := q'!select sal salary,

e.empno EOD, e.ename "Employee_name", d.dname "Department",

e.hiredate "Date_Hired"

from emp e, dept d

where d.deptno = :p1 and e.deptno = d.deptnoand sal > :p2

order by sal desc!';

dbms_sqltune.import_sql_profile(sql_text => sqlt,

name => 'SP_EMPHASH',

profile => sqlprof_attr(q'!PQ_DISTRIBUTE(@"SEL$1" "E"@"SEL$1" BROADCAST NONE)!',

q'!USE_HASH(@"SEL$1" "E"@"SEL$1")!',

q'!LEADING(@"SEL$1" "D"@"SEL$1" "E"@"SEL$1")!',

q'!FULL(@"SEL$1" "E"@"SEL$1")!',

q'!FULL(@"SEL$1" "D"@"SEL$1")!',

q'!OUTLINE_LEAF(@"SEL$1")!',

q'!ALL_ROWS!',

q'!DB_VERSION('12.1.0.2')!',

q'!OPTIMIZER_FEATURES_ENABLE('12.1.0.2')!',

q'!IGNORE_OPTIM_EMBEDDED_HINTS!'),

force_match => true);

END;

/

SQL PROFILES – MANUAL SETUP

56© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

Oracle has many ways to improve Plan Stability

o Almost too many

• It can be confusing at times

• Outlines, Profiles, Patches & Baselines

Plans change for many reasons

o Data grows, system changes, stale statisics

o Oracle features – such as SQL Directives, Adaptive Cursor Sharing, etc…

o V$SQL_PLAN & V$SQL_SHARED_CURSOR helps with finding out the ‘WHY’

• Don’t forget about XML Query of column ‘Other_XML’

Monitor the features that may impact plans

o dba_sql_plan_directives, dba_sql_plan_dir_objects, & v$sql_reotimization_hints

Consider using Baselines, Patches & Profile to help stabilize plans

Q & A

SUMMARY

55© 2016 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

www.solarwinds.com/dpa-download/

RESOLVE PERFORMANCE ISSUES QUICKLY

Try Database Performance Analyzer FREE for 14 days

Improve root cause of slow performance

o Quickly identify root cause of issues that impact end-user response time

o See historical trends over days, months, and years

o Understand impact of VMware® performance

o Agent-less architecture with no dependence on Oracle® Packs; installs in

minutes

59© 2017 SOLARWINDS WORLDWIDE, LLC. ALL RIGHTS RESERVED.

